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Abstract

Bearing fault detection is a challenging task, especially at the incipient stage. Wavelet denoising is widely recognized as

an effective tool for signal processing and feature extraction. The wavelet denoising method by incorporating neighboring

coefficients (NeighCoeff), which is proposed by Cai and Silverman, gives the better results than the traditional term-by-

term approaches. However, this method only exploits intra-scale dependency of wavelet coefficients. It does not consider

the inter-scale dependency of wavelet coefficients. In this paper, customized wavelet denoising using intra- and inter-scale

dependency of wavelet coefficients is proposed for bearing fault detection. By designing the prediction operator and update

operator, a customized wavelet based on the lifting scheme is constructed directly to match the transient properties of a

given signal. The NeighCoeff denoising algorithm is improved by taking into account the intra- and inter-scale dependency

of wavelet coefficients. The results of the application to bearing fault detection show that the proposed method is very

effective.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Bearing fault detection is a typical problem in rotating machinery fault diagnosis [1]. Material fatigue, faulty
installation, or inappropriate lubrication may cause localized defects of rolling bearings. Each time the rolling
element passes over the defect, an impulse of vibration is generated. The periodic impulses in the vibration
signals contain rich information about bearing health. However, defect-induced impulses are rather weak at
the incipient stage, and often buried in background noise. Therefore, denoising and extraction of the defect-
related signals are very important for bearing fault detection.

There are many vibration-based diagnosis techniques available for rolling bearings, for example, statistical
analysis [2], adaptive noise canceling [3], high-frequency resonance technique [4], neural network [5], and fuzzy
logic [6]. However, there is no ideal way to extract the weak signals of bearing incipient defects. One main
reason is that the signal-to-noise ratio (SNR) is lower, and the defect-induced signals are more difficult to be
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

dð0Þ odd samples of original signal
~d
ðlþ1Þ

wavelet coefficients of redundant decom-
position at level l+1

N the number of prediction coefficients
~N the number of update coefficients

P prediction operator
Popt optimal prediction operator

P(l) redundant prediction operator at level l

s(0) even samples of original signal
~sðlþ1Þ approximation coefficients of redundant

decomposition at level l+1
U update operator
Uopt optimal update operator

U(l) redundant update operator at level l

x original signal
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isolated. Many researchers have investigated the application of wavelet transform to vibration signal analysis
for bearing fault detection [7–11]. One common approach taken by the prior studies is that the standard
wavelets selected from a library of wavelet functions are used as the mother wavelets. Unfortunately, such
standard wavelet functions are independent of a given signal. Since different types of wavelets have different
time–frequency structures, it is always very difficult to choose the best wavelet function for feature extraction.
Moreover, an inappropriate wavelet will directly decrease the accuracy of the fault detection. To overcome the
above limitation, it is necessary to develop new methods to design customized wavelets for machine fault
diagnosis. The lifting scheme is developed by Sweldens as a powerful tool to construct biorthogonal wavelets
in the spatial domain [12,13]. It provides a great deal of flexibility and freedom for the construction of
biorthogonal wavelets, and can be used to construct customized wavelets by the design of prediction operator
and update operator. In Refs. [14,15], the lifting scheme has been applied for rotating machinery fault
diagnosis.

Wavelet denoising techniques are used to increase the SNR, such as Donoho [16] proposed a simple

thresholding rule which sets all the coefficients smaller than the universal threshold s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log n

p
to zero and

shrinks the rest of the coefficients by the threshold (soft-thresholding) or retains them without change
(hard-thresholding). This algorithm offered the advantage of smoothness and adaptation. However,
Coifman and Donoho [17] pointed out this algorithm exhibit visual artifacts: Gibbs phenomena in the
neighborhood of discontinuities. Therefore, they developed a translation-invariant (TI) denoising scheme to
suppress such artifacts. But the traditional term-by-term approaches for both TI and non-TI wavelet
denoising do not consider the intra-scale or/and inter-scale dependency of wavelet coefficients. Cai and
Silverman [18] proposed a thresholding scheme by taking immediate neighbor coefficients into account. Their
experimental results showed that neighboring coefficients (NeighCoeff) thresholding was better than
traditional term-by-term wavelet denoising. Chen and Bui [19] extended the NeighCoeff thresholding idea
to the multiwavelet case. However, NeighCoeff wavelet thresholding only explored intra-scale dependency.
Some new denoising schemes were developed by exploiting the intra- and inter-scale dependency of wavelet
coefficients [20–22].

To make up the deficiency of NeighCoeff denoising, a new denoising method based on customized wavelet
is proposed in this paper. A customized wavelet is constructed directly by the design of prediction operator
and update operator. The genetic algorithms are used to design the prediction operator based on kurtosis
maximization principle. The update operator is designed to minimize a reconstruction error. The NeighCoeff
denoising method is improved by exploiting the intra- and inter-scale dependency of wavelet coefficients. We
find that the customized wavelet denoising using intra- and inter-scale dependency can closely match the
characteristics of vibration signals, and it is very effective to capture bearing fault symptoms from the complex
vibration signals.

The structure of the paper is organized as follows. In Section 2, the theory of lifting scheme is
reviewed briefly. In Section 3, a customized wavelet based on the lifting scheme is set up. In Section 4, we
discuss the redundant version of the lifting scheme. Section 5 describes the improved NeighCoeff denoising. In
Section 6, the proposed method is applied to detect localized defects of rolling bearings. Conclusions are given
in Section 7.
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2. Review of the lifting scheme

The lifting scheme is a very general and highly flexible tool to construct biorthogonal wavelets in the spatial
domain [12,13]. The lifting scheme consists in three main steps.

In the split step, the original signal x ¼ (xi)iAZ is split into even samples sð0Þ ¼ ðsð0Þi Þi2Z , and odd samples
dð0Þ ¼ ðd ð0Þi Þi2Z ,

s
ð0Þ
i ¼ x2i; d

ð0Þ
i ¼ x2iþ1. (1)

In the prediction step, we apply an operator P on s(0) to predict d ð0Þ. The prediction error d ¼ (di)iAZ is
regarded as wavelet coefficients of x,

di ¼ d
ð0Þ
i �

XN=2
r¼�N=2þ1

prs
ð0Þ
iþr, (2)

where pr are coefficients of the prediction operator P, and N is the number of prediction coefficients.
In the update step, an update of even samples s(0) is accomplished by using an update operator U on wavelet

coefficients d and adding the result to s(0), the update sequence s ¼ (si)iAZ can be regarded as the
approximation coefficients of x,

si ¼ s
ð0Þ
i þ

X~N=2
j¼� ~N=2þ1

ujdiþj�1, (3)

where uj are coefficients of the update operator U, and ~N is the number of update coefficients.
Let s be the input signal for lifting scheme, the wavelet coefficients and approximation coefficients at the

lower resolution can be obtained. The inverse lifting scheme can be immediately performed by reversing the
prediction and update operators and changing each ‘+’ into ‘�’ and vice versa. Fig. 1 shows the forward and
inverse transform of the lifting scheme.

3. The construction of customized wavelet based on the lifting scheme

The theorems in Ref. [12], expressed by Sweldens in the lifting framework, ensure the biorthogonality of
wavelet relevant to the lifting scheme. However, different prediction operator P and update operator U can
construct wavelet functions with different time–frequency structures. In order to optimize the prediction
operator and update operator, Gouze [23] introduced two meaningful conditions for operator P and U. The
symmetrical linear phase constraints are expressed as follows:

pr ¼ p�rþ1; r ¼ 1; 2; . . . ; N=2, (4)

uj ¼ u�jþ1; j ¼ 1; 2; . . . ; ~N=2. (5)

The filtering ‘normalization’ constraints are expressed as follows:

XN=2
r¼1

pr ¼
1

2
, (6)
x

s(0)

d(0)
d

s

P U
x

U PSplit Merge

Fig. 1. The forward and inverse transform of the lifting scheme.
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X~N=2
j¼1

uj ¼
1

4
. (7)

3.1. Design of the optimal prediction operator Popt

The prediction step provides the wavelet coefficients d. To ensure that the derived wavelet can efficiently
isolate the feature components from original signal, a criterion for the prediction operator is needed. Kurtosis
is used in engineering to detect fault symptoms because it is sensitive to sharp changed structures, such as
impulses [24]. In this paper, we use kurtosis as the performance measure of prediction operator. The criterion
of prediction operator P is defined as follows:

KP ¼
Efðd � d̄Þ4g

s4
, (8)

where d̄ and s are the mean and standard deviation of wavelet coefficients d, and E{ � } is the expectation. Our
objective is to find the optimal prediction operator Popt that maximizes the kurtosis criterion Kp while
satisfying constraints (4) and (6).

Many optimization methods have been presented, and each has its own advantages and limitations. One of
the main advantages of genetic algorithms [25] is that it does not have mathematical requirements on the
optimization problem. Moreover, genetic algorithms are effective in global optimization. In this paper, genetic
algorithms are used to optimize the prediction operator P.

In the initialization population for prediction operator P, the coefficients (p�N/2+1,y, pN/2) of the
prediction operator P are coded using the real-coded mechanism. First, the coefficients (p2,y, pN/2) are
generated randomly. Second, the coefficients (p�N/2+1,y, p�1) are given according to Eq. (4). Finally,
the coefficients (p0, p1) are obtained by the following formula:

p0 ¼ p1 ¼
1

2
�
XN=2
r¼2

pr. (9)

The arithmetic crossover and uniform mutation operators commonly used in genetic algorithms were
employed for the optimization process [25]. To increase the efficiency of the process, the population scale is set
to 50, the number of iteration to 100, the probability of crossover to 0.7 and the probability of mutation to
0.025.
3.2. Design of the optimal update operator Uopt

An effective update operator provides approximation coefficients, offering an accurate representation of the
original signal at the lower resolution. To obtain the optimal update coefficients, the quadratic error of
reconstruction [23] is used as the criterion. It is described as follows:

JU ¼ Efðŝð0Þ � sð0ÞÞ2g þ Efðd̂
ð0Þ
� dð0ÞÞ2g, (10)

where ŝð0Þ and d̂
ð0Þ

represent even samples and odd samples of the reconstructed signal x̂ without using wavelet
coefficients d. When d ¼ 0, the inverse lifting scheme is shown in Fig. 2.

From Fig. 2, ŝð0Þ and d̂
ð0Þ

are given by the following equations:

ŝð0Þ ¼ s, (11)

d̂
ð0Þ
¼ Ps. (12)

During the design of the update operator, our goal is to find the optimal update operator Uopt that could
minimize the criterion JU while satisfying constraints (5) and (7).
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Fig. 2. The inverse lifting scheme with d ¼ 0.
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Let l be the Lagrange operator, under constraint (7), the new criterion can be expressed as follows:

JU ðu; lÞ ¼ Efðŝð0Þ � sð0ÞÞ2g þ Efðd̂
ð0Þ
� dð0ÞÞ2g þ l

1

4
�
X~N=2
j¼1

uj

0
@

1
A. (13)

Considering Eqs. (3), (5), and (11), we obtain

Efðŝð0Þ � sð0ÞÞ2g ¼ E
X~N=2
j¼1

ujðdiþj�1 þ di�jÞ

2
4

3
5
28<

:
9=
;. (14)

From Eqs. (2), (3), (5), and (12), we deduce the following result:

Efðd̂
ð0Þ
� dð0ÞÞ2g ¼ E

X~N=2
j¼1

ujðs
0
iþj þ s0i�jþ1Þ � di

2
4

3
5
28<

:
9=
;, (15)

where

s0i ¼
XN=2
r¼1

prðdi�r þ diþr�1Þ. (16)

To minimize Eq. (13), partial derivatives of the criterion JU(u, l) with respect to the variable uj and l are
expressed as follows:

qJU ðu; lÞ
quj

¼ 0; j ¼ 1; 2; . . . ; ~N=2, (17)

qJU ðu; lÞ
ql

¼ 0. (18)

By setting

Ak;l ¼ Efðdiþk�1 þ di�kÞðdiþl�1 þ di�lÞ þ ðs
0
iþk þ s0i�kþ1Þðs

0
iþl þ s0i�lþ1Þg, (19)

Bk;1 ¼ Efdiðs
0
iþk þ s0i�kþ1Þg. (20)

A linear system with ( ~N=2þ 1) variables, which is combined by Eqs. (17) and (18), can be rewritten as

AY ¼ B (21)
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with

A ¼

A1;1 � � � A1; ~N=2 �1

..

. . .
. ..

. ..
.

A ~N=2;1 � � � A ~N=2; ~N=2 �1

1 � � � 1 0

2
666664

3
777775, (22)

Y ¼ ½u1; . . . ; u ~N=2; l�
T, (23)

B ¼ ½B1;1; . . . ; B ~N=2;1; 1=4�
T. (24)

According to Eq. (5) and the vector Y ¼ ½u1; u2; . . . ; u ~N=2; l�, we can obtain the optimal update operator
Uopt ¼ ½u� ~N=2þ1; . . . ; u0; u1; . . . ; u ~N=2�.

4. The redundant lifting scheme

For the classical wavelet transform, a solution for translation invariance is given by redundant wavelet
transform, which eliminates the decimation step and retains the information of low- and high-frequency
signals. The redundant wavelet transform can also be translated into a redundant lifting scheme [26]. The
forward and inverse transform of redundant lifting scheme is shown in Fig. 3.

Based on the design of customized wavelet mentioned in Section 3, we obtain the prediction operator Popt

and update operator Uopt, which closely match the inspected signal. In the redundant lifting scheme, the split
step is discarded. The redundant prediction operator P(l) and the redundant update operator U(l) are computed
by padding the prediction operator Popt and update operator Uopt with zeros at the corresponding level l. The
decomposition results of an approximation signal ~sðlÞ at level l with redundant lifting scheme are expressed by
following equations:

~d
ðlþ1Þ
¼ ~sðlÞ � PðlÞ~sðlÞ, (25)

~sðlþ1Þ ¼ ~sðlÞ þU ðlÞ ~d
ðlþ1Þ

, (26)

where ~d
ðlþ1Þ

and ~sðlþ1Þ are wavelet coefficients and approximation coefficients at level l+1.

5. The wavelet denoising based on intra- and inter-scale dependency

The basic motivation of NeighCoeff thresholding is that if the current coefficient contains some signal, then
it is likely that the two neighbor coefficients also do. For this reason, Cai and Silverman [18] proposed the
following thresholding scheme for wavelet denoising. If S2

l;i ¼ ð
~d
ðlÞ

i�1Þ
2
þ ð ~d

ðlÞ

i Þ
2
þ ð ~d

ðlÞ

iþ1Þ
2 is less than or equal to

l2, then we set the wavelet coefficient ~d
ðlÞ

i to zero. Otherwise, we set it to

~d
ðlÞ

i ¼
~d
ðlÞ

i 1�
m2l
S2

l;i

 !
, (27)
~s (l)

~
d (l+1)

~s (l+1)

~s (l)

P[l] U[l] U [l] P [l] ˆˆ( + d (l+1))/2s (l+1)

ŝ (l+1)

d̂ (l+1)

Fig. 3. The forward and inverse transform of redundant lifting scheme.
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where ml ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2l log n

q
, l is the scale level. n and s denotes the length and standard deviation of wavelet

coefficients ~d
ðlÞ
, respectively. It should be mentioned that if ~d

ðlÞ

i is at the left (right) boundary of wavelet

coefficients, we omit the first (last) term in S2
l;i.

It is well known that wavelet coefficients are dependent [27] due to two properties of wavelet transform: (1) a
coefficient is large or small, the adjacent coefficients are likely to be large or small, and (2) large or small
coefficients tend to propagate across the scales. The NeighCoeff thresholding scheme exploits the intra-scale
dependency of wavelet coefficients. However, this method does not consider the evolution of wavelet
coefficients along scale, which usually carries important information. In this paper, we improve the
NeighCoeff thresholding algorithm using intra- and inter-scale dependency of wavelet coefficients. As
observed as Xu et al. [20], the two or three consecutive resolutions can obtain better results than more
consecutive resolutions. Therefore, the NeighCoeff thresholding scheme is improved by the following method.

Suppose S2
lþ1;i ¼ ð

~d
ðlþ1Þ

i�1 Þ
2
þ ð ~d

ðlþ1Þ

i Þ
2
þ ð ~d

ðlþ1Þ

iþ1 Þ
2, let mlþ1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2s2lþ1 log n

q
be the threshold of wavelet

coefficients ~d
ðlþ1Þ

at level l+1. Then the improved thresholding formula is given by

~dl;i ¼
~dl;i 1�

m2l þ m2lþ1
S2

l;i þ S2
lþ1;i

 !
if S2

l;i þ S2
lþ1;iXm2l þ m2lþ1;

0 otherwise:

8><
>: (28)

The customized wavelet denoising using the intra- and intra-scale dependency of wavelet coefficients can be
summarized as follows:
(1)
 Calculate the optimal prediction operator Popt and the optimal update operator Uopt, and construct the
customized wavelet.

ðlÞ ðlþ1Þ

(2)
 Perform the decomposition of redundant lifting scheme, obtaining the wavelet coefficients ~d , ~d .

(3)
 Compute the parameters S2

l;i;S
2
lþ1;i and the thresholds ml, ml+1.

ðlÞ

(4)
 Apply the improved algorithm Eq. (28) to modify wavelet coefficients ~di .

(5)
 Obtain the reconstruction signal using the inverse transform of redundant lifting scheme.
6. The proposed denoising scheme for bearing fault detecting

6.1. Simulation experiment

To verify the feasibility of the proposed method for the extraction of the weak signals, an impulse signal is
described as 0.2e�200tsin(5000t) and a simulated signal is composed of periodic impulse signals with a period of
0.12 s. The sampling frequency is 2000Hz. Fig. 4 shows the simulated signal. The simulated signal is
contaminated with additive white noise. The noise level is defined as the ratio of the energy of the white noise
to the energy of the periodic impulse signal. The noise ratio is 12.68. The noisy signal is shown in Fig. 5. The
impulse components are masked by the noise, we can hardly find any periodic impulses in Fig. 5. The
customized wavelet denoising using the intra- and inter-scale dependency is applied to analyze the noisy signal.
The optimal prediction operator and update operator are Popt ¼ [0.2741, �0.4385, 0.6644, 0.6644, �0.4385,
0.2741], Uopt ¼ [0.0142, �0.0030, 0.2388, 0.2388, �0.0030, 0.0142]. The customized scaling function and
wavelet function are shown in Fig. 6. The noisy signal is performed 4-level decomposition by redundant lifting
scheme, and then the wavelet coefficients are thresholded by our improved algorithm. The purified signal using
the proposed method is shown in Fig. 7(a). Evenly spaced impulse clusters can be observed from Fig. 7(a). The
Donoho’s hard-thresholding, soft-thresholding and NeighCoeff denoising based on non-adaptive lifting
scheme are also applied to analyze the same signal for comparison. In the non-adaptive lifting scheme, the
prediction operator and update operator, which are independent of the inspected signal, are obtained by the
interpolation subdivision method introduced in Ref. [28]. They are [0.0117, �0.0977, 0.5859, 0.5859, �0.0977,
0.0117], and [0.0059, �0.0488, 0.2930, 0.2930, �0.0488, 0.0059], respectively. The purified signals using
Donoho’s hard-thresholding, Donoho’s soft-thresholding and NeighCoeff denoising are shown in Fig. 7.
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Fig. 5. The simulated signal with additive white noise.

Fig. 6. Scaling function and wavelet function adapted to the signal shown in Fig. 5.

Fig. 4. The simulated impulse signals.
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Fig. 7. The purified signals in the simulation experiment using different denoising methods: (a) the purified signal using the proposed

method, (b) the purified signal using Donoho’s hard-thresholding method, (c) the purified signals using NeighCoeff denoising method, and

(d) the purified signal using Donoho’s soft-thresholding method.
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The results show that the NeighCoeff denoising outperforms the Donoho’s hard-thresholding and soft-
thresholding for impulse extraction.

Compared with Fig. 7(b)–(d), the results in Fig. 7(a) show that the proposed denoising method is better than
the NeighCoeff denoising, Donoho’s hard-thresholding and soft-thresholding for the extraction of the
periodic impulses.

The noisy signal shown in Fig. 5 is analyzed using the traditional Daubechies 8 wavelet. The purified signals
are shown in Fig. 8. The periodic impulses are not extracted effectively.
6.2. Practical experiments

Generally, faults that occur in ball or rolling bearings are related to their defective inner-races, outer-races,
rolling elements, or cages [29]. Since the measured vibration signals are always complex and non-stationary,
and the defect-induced impulses are often buried in background noise. Hence, it is very difficult to distinguish
them from noisy signals. To demonstrate the performance of the proposed method for bearing fault detecting,
our objective is to extract the impulsive signals related to bearing characteristic frequency from the vibration
signals. This section presents two application examples for the detection of localized outer- and inner-race
defects. The geometric parameters of the rolling bearing in the experiment are listed in Table 1.
6.2.1. Case 1: detection of outer-race defects in rolling bearing

Fig. 9 shows the outer race of bearing with the localized defects. The speed of the spindle is 195 rev/min, that
is the rotating frequency f ¼ 3.25Hz. Based on the geometric parameters and rotating speed, the characteristic
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Fig. 8. The purified signals in the simulation experiment using Daubechies 8 wavelet: (a) the purified signal using Donoho’s hard-

thresholding method, (b) the purified signal using Donoho’s soft-thresholding method, and (c) the purified signals using NeighCoeff

denoising method.

Table 1

The geometric parameters of the tested bearing

Ball diameter, d 68mm

Pitch diameter, E 450mm

Contact angle, a 01

Number of rolling elements, z 17

L. Zhen et al. / Journal of Sound and Vibration 313 (2008) 342–359 351
frequency of the outer-race defects can be calculated by the following formula:

f o ¼
1

2
f 1�

d

E
cos a

� �
z. (29)

Using the above formula, the characteristic frequency of outer-race defects is calculated to be at 23.45Hz.
That is, for outer-race defects, the period of the characteristic impulses is 0.042 s.

The vibration signals are collected from accelerometers mounted on the bearing housing. The signals are
digitized at a sampling frequency of 12.8 kHz. Fig. 10 shows the vibration signal of the inspected bearing.
According to bearing kinematics and dynamics, an impact occurs each time a roller encounters the spalls.
However, from Fig. 10, these impacts are buried in the wideband noise and environmental noise. The fast
Fourier transform (FFT) spectrum of vibration signal is shown in Fig. 11. The meaningful information for
detecting the outer-race defects is not given in Figs. 10 and 11.

In order to extract the feature components caused by the outer-race defects, we use the customized wavelet
denoising based on intra- and inter-scale dependency to analyze the vibration signal shown in Fig. 10. The
optimal prediction operator Popt is [�0.0241, �0.0896, 0.6137, 0.6137, �0.0896, �0.0241], and the optimal
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Fig. 10. The vibration signal collected from the bearing with localized outer-race defect.

Fig. 9. Bearing with localized outer-race defects.

L. Zhen et al. / Journal of Sound and Vibration 313 (2008) 342–359352
update operator Uopt is [0.0002, �0.0319, 0.2817, 0.2817, �0.0319, 0.0002]. The customized scaling function
and wavelet function are shown in Fig. 12. The vibration signal with outer-race defects is performed 4-level
decomposition by redundant lifting scheme, and then the wavelet coefficients are thresholded by our improved
algorithm. The purified signal using the proposed denoising method is shown in Fig. 13(a). Evenly spaced
impulse clusters can be observed from Fig. 13(a). The periodic interval of the impulse clusters is approximately
equal to 0.042 s, which are equivalent to the inverse of the characteristic frequency of outer-race defects (fo).
Hence, it can be concluded that the impulses are caused by the outer-race defects of rolling bearing.

The same signal with localized outer-race defects is analyzed by using the Donoho’s hard-thresholding, soft-
thresholding, and the NeighCoeff denoising method based on the non-adaptive lifting scheme. The results are
shown in Fig. 13(b)–(d). Compared with the waveform shown in Fig. 13(a), the periodic impulses are not
extracted obviously in Fig. 13(b)–(d).

To confirm the effectiveness of the proposed method, the vibration signal shown in Fig. 10 is analyzed using
the traditional enveloping technique. Fig. 14 illustrates the envelope spectrum of the vibration signal. From
Fig. 14, there is not an obvious spectrum line at the characteristic frequency of outer-race defects (23.45Hz).
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Fig. 12. Scaling function and wavelet function adapted to the vibration signal shown in Fig. 10.

Fig. 11. The FFT spectrum of the vibration signal shown in Fig. 10.
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The same vibration signal is also processed using the traditional Daubechies 8 wavelet denoising method. The
purified signals are shown in Fig. 15. Compared with the Fig. 13(a), only several impulses are extracted.

6.2.2. Case 2: detection of inner-race defects in roller bearing

Fig. 16 shows the inner race of bearing with the localized defects. The speed of the spindle is 300 rev/min,
that is the rotating frequency f ¼ 5.0Hz. Based on the geometric parameters and rotating speed, the
characteristic frequency of the inner-race defects can be calculated by the following formula:

f i ¼
1

2
f 1þ

d

E
cos a

� �
z. (30)

Using the above formula, the characteristic frequency of inner-race defects is calculated to be at 48.92Hz.
That is, for inner-race defects, the period of the characteristic impulses is 0.020 s.

Because inner-race defects have more transfer segments when transmitting the impulse to the outer surface
of the bearing housing, the impulse components are rather weak in bearing vibration signal. Fig. 17 illustrates
the vibration signal of roller bearing with the localized inner-race defects. The vibration signal is acquired by
an accelerometer mounted on the bearing housing. The sampled frequency is 12.8 kHz. From Fig. 17, the
periodic impulses related to the inner-race defects are covered by heavy background noise. The FFT spectrum
of vibration signal of the inspected bearing is shown in Fig. 18. The useful information for detecting the failure
is not given in Fig. 18.
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Fig. 13. The purified signals with localized outer-race defects using different denoising methods: (a) the purified signal using the proposed

method, (b) the purified signal using Donoho’s hard-thresholding method, (c) the purified signal using Donoho’s soft-thresholding

method, and (d) the purified signals using NeighCoeff denoising method.

Fig. 14. The envelope spectrum of the signal shown in Fig. 10 using enveloping technique.
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In order to extract the feature components caused by inner-race defects, the customized wavelet denoising
based on intra- and inter-scale dependency is used to analyze the vibration signal shown in Fig. 17.
As introduced in Section 3, the optimal prediction operator Popt and update operator Uopt are obtained.
They are [0.004, �0.2796, 0.7756, 0.7756, �0.2796, 0.004] and [0.0475, �0.0948, 0.2973, 0.2973, �0.0948,
0.0475]. The customized scaling function and wavelet function are shown in Fig. 19. The vibration signal
with inner-race defects is performed 4-level decomposition by redundant lifting scheme. Fig. 20(a) shows
the purified signal using the proposed denoising method. The periodic impulses appear clearly in Fig. 20(a).
The period is just about 0.020 s, which is in accordance with the characteristic frequency of inner-race
defects (fi).



ARTICLE IN PRESS

Fig. 15. The purified signals with localized outer-race defects using Daubechies 8 wavelet: (a) the purified signal using Donoho’s hard-

thresholding method, (b) the purified signal using Donoho’s soft-thresholding method, and (c) the purified signals using NeighCoeff

denoising method.

Fig. 16. Bearing with localized inner-race defects.
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The vibration signal with inner-race defects is also analyzed using the Donoho’s hard-thresholding, soft-
thresholding and the NeighCoeff denoising method based on the non-adaptive lifting scheme for comparison.
The results are shown in Fig. 20(b)–(d). The periodic impulses related to the inner-race defects are not revealed
in Fig. 20(b)–(d).

The vibration signal shown in Fig. 17 is analyzed using the traditional enveloping technique. Fig. 21
illustrates the envelope spectrum of the vibration signal. There is not an obvious spectrum line at the
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Fig. 17. The vibration signal collected from the bearing with localized inner-race defects.

Fig. 18. The FFT spectrum of the vibration signal shown in Fig. 17.

Fig. 19. Scaling function and wavelet function adapted to the vibration signal shown in Fig. 17.
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Fig. 20. The purified signals with localized inner-race defects using different denoising methods: (a) the purified signal using the proposed

method, (b) the purified signal using Donoho’s hard-thresholding method, (c) the purified signal using Donoho’s soft-thresholding

method, and (d) the purified signals using NeighCoeff denoising method.

Fig. 21. The envelope spectrum of the signal shown in Fig. 17 using enveloping technique.
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characteristic frequency of inner-race defect (48.92Hz). The same vibration signal is also processed using the
traditional Daubechies 8 wavelet denoising method. The purified signals are shown in Fig. 22. None of them
can reveal distinctly the fault feature corresponding to the localized inner-race defects.
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Fig. 22. The purified signals with localized inner-race defects using Daubechies 8 wavelet: (a) the purified signal using Donoho’s hard-

thresholding method, (b) the purified signal using Donoho’s soft-thresholding method, and (c) the purified signals using NeighCoeff

denoising method.
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7. Conclusion

In this paper, customized wavelet denoising using the intra- and inter-scale dependency of wavelet
coefficients has been proposed for bearing fault detection. Firstly, the optimal prediction operator and update
operator are designed by the rules of the kurtosis maximization and reconstruction error minimization,
respectively. A customized wavelet is constructed, which is adapted to the transient characteristics of the
inspected signal. Then, a new denoising method based on customized wavelet is developed by exploiting intra-
and inter-scale dependency of wavelet coefficients to improve the NeighCoeff denoising algorithm.

The proposed method has been tested by simulated signal and bearing vibration signals. The results show that
it performs better than non-adaptive lifting scheme and traditional Daubechies 8 wavelet that are independent of
the inspected signal. Compared with the NeighCoeff denoising, Donoho’s hard-thresholding and soft-
thresholding, the proposed method clearly extracts the periodic impulse caused by weak fault in rolling bearing.
Therefore, it provides an effective method to reveal transient feature components for bearing fault detection.
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